Constant payoff in zero-sum stochastic games
نویسندگان
چکیده
Dans un jeu stochastique à somme nulle, chaque étape, deux joueurs adversaires prennent des décisions et reçoivent paiement d’étape déterminé par ces décisions, ainsi que une variable aléatoire contrôlée qui représente l’état de la nature. Le total est escomptée normalisée paiements d’étape. cet article, nous résolvons conjecture du “paiement constant”, formulée Sorin, Venel Vigeral (Sankhya A 72 (1) (2010) 237–245) : si les jouent stratégies optimales, alors pour tout α>0, l’espérance escompté entre étapes 1 α/λ tend vers limite valeur jeu, lorsque le facteur d’escompte λ 0.
منابع مشابه
Two-Person Zero-Sum Stochastic Games with Semicontinuous Payoff
Consider a two-person zero-sum stochastic game with Borel state space S, compact metric action sets A, B and law of motion q such that the integral under q of every bounded Borel measurable function depends measurably on the initial state s and continuously on the actions (a,b) of the players. Suppose the payoff is a bounded function f of the infinite history of states and actions such that f i...
متن کاملDefinable Zero-Sum Stochastic Games
Definable zero-sum stochastic games involve a finite number of states and action sets, reward and transition functions that are definable in an o-minimal structure. Prominent examples of such games are finite, semi-algebraic or globally subanalytic stochastic games. We prove that the Shapley operator of any definable stochastic game with separable transition and reward functions is definable in...
متن کاملOn Canonical Forms for Two-person Zero-sum Limiting Average Payoff Stochastic Games
We consider two-person zero-sum mean payoff undiscounted stochastic games. We give a sufficient condition for the existence of a saddle point in uniformly optimal stationary strategies. Namely, we obtain sufficient conditions that enable us to bring the game, by applying potential transformations to a canonical form in which locally optimal strategies are globally optimal, and hence the value f...
متن کاملA lower bound for discounting algorithms solving two-person zero-sum limit average payoff stochastic games
It is shown that the discount factor needed to solve an undiscounted mean payoff stochastic game to optimality is exponentially close to 1, even in games with a single random node and polynomially bounded rewards and transition probabilities.
متن کاملA potential reduction algorithm for two-person zero-sum limiting average payoff stochastic games
We suggest a new algorithm for two-person zero-sum undiscounted stochastic games focusing on stationary strategies. Given a positive real , let us call a stochastic game -ergodic, if its values from any two initial points differ by at most . The proposed new algorithm outputs for every > 0 in finite time either a pair of stationary strategies for the two players guaranteeing that the values fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2021
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/20-aihp1146